Carrier Recovery & PED/FEDs
Est. read time: 1 minute | Last updated: November 07, 2024 by John Gentile
Contents
Frequency Error Detector (FED)
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
from rfproto import filter, impairments, measurements, multirate, nco, pi_filter, plot, sig_gen
fs = 100.0e3
f_start = -fs/2
f_end = fs/2
num_samples = int(fs) # 1 second
lfm_chirp_sig = sig_gen.cmplx_dt_lfm_chirp(100, f_start, f_end, fs, num_samples)
mid_pt = int(len(lfm_chirp_sig)/2)
margin = 1000
plot.samples(np.real(lfm_chirp_sig[mid_pt - margin:mid_pt + margin]))
plt.show()
f, t, Zxx = signal.stft(np.real(lfm_chirp_sig), fs, nperseg=100)
plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=2, shading='gouraud')
plt.title('STFT Magnitude')
plt.ylabel('Frequency [Hz]')
plt.xlabel('Time [sec]')
plt.show()
class Dfd:
def __init__(self):
self.z1 = 0 + 1j*0
def Step(self, x):
retval = (self.z1.imag * x.real) - (self.z1.real * x.imag)
self.z1 = x
return retval
freq_disc = np.zeros(len(lfm_chirp_sig))
test_dfd = Dfd()
for i in range(len(lfm_chirp_sig)):
freq_disc[i] = test_dfd.Step(lfm_chirp_sig[i])
plt.plot(freq_disc)
plt.show()
Blind, Non-Data Aided (NDA) FLL can be made by RRC/match filtering, Mth power to fold phase into sinusoid which has frequency offset at times the CFO, LPF’ing then using L&R type autocorrelation FED (see above) loop filtered to drive frequency error to zero.
References
Phase Error Detector (PED)
Combined Carrier Recovery
When frequency offset is not significant (e.x. majority of signal bandwidth is still within passband of matched filter, and/or when Coarse Frequency Correction (CFC) has already been applied upstream), frequency and phase errors can be jointly compensated in a carrier recovery scheme.
symbol_rate = 5e6
OSR = 10
output_fs = OSR * symbol_rate
rrc_alpha = 0.25
num_symbols = 4096
in_symbols = np.random.randint(0, 4, num_symbols).tolist()
output_iq = sig_gen.gen_mod_signal(
"QPSK",
in_symbols,
output_fs,
symbol_rate,
"RRC",
rrc_alpha,
)
#output_iq = impairments.freq_offset_static(output_iq, 1e3, output_fs)
plot.IQ(output_iq, alpha=0.1)
plot.plt.show()
plot.spec_an(output_iq, fs=output_fs, fft_shift=True, show_SFDR=False, y_unit="dB")
plt.show()
M = OSR // 2 # Decimation factor to get to 2x Samples/Symbol (SPS)
rx_rrc = filter.RootRaisedCosine(output_fs, symbol_rate, rrc_alpha, M * 5)
rx_shaped = signal.lfilter(rx_rrc, 1, output_iq)
downsampled=multirate.decimate(rx_shaped, M)
# Scale and quantize output similar to 16b input
max_val = max(max(abs(downsampled.real)), max(abs(downsampled.imag)))
scale_val = ((2**15) - 1) / max_val
downsampled *= scale_val
downsampled = np.round(downsampled)
plot.spec_an(downsampled, fs=output_fs/M, fft_shift=True, show_SFDR=False, y_unit="dB")
plt.show()
plot.IQ(downsampled[::2], alpha=0.1)
plt.show()
last_samp = 0 + 1j*0
def mpsk_costa(x):
global last_samp
retval = np.angle(x * np.conj(last_samp))
last_samp = x
#return 32768 * retval / np.pi
return (np.sign(x.real) * x.imag) - (np.sign(x.imag) * x.real)
cr_nco = nco.Nco(32, 16, 10, output_fs/M)
#cr_nco.SetOutputFreq(-1e3)
cr_filt = pi_filter.PiFilter(0.01, 1.0, 32768)
cr_dfd = Dfd()
N_out = len(downsampled)
nco_out = np.zeros(N_out) + 1j*np.zeros(N_out)
ped_out = np.zeros(N_out)
pi_filt_out = np.zeros(N_out)
for i in range(N_out):
nco_out[i] = (downsampled[i] * cr_nco.GetCurrentNcoOutput()) / 32768
ped_out[i] = mpsk_costa(nco_out[i])
#ped_out[i] = cr_dfd.Step(nco_out[i])
pi_filt_out[i] = cr_filt.Step(ped_out[i])
cr_nco.IncPhaseAcc(pi_filt_out[i])
#plt.plot(ped_out, '.', alpha=0.1)
plt.plot(ped_out[:20])
plt.show()
plt.plot(pi_filt_out, '.', alpha=0.1)
plt.show()
plt.plot(nco.FcwToFreq(pi_filt_out, 32, output_fs/M), '.', alpha=0.1)
plt.show()
plot.IQ(nco_out[::2], alpha=0.1)
plt.show()
References
- High modulation index PSK - carrier recovery - DSP Stack Exchange
- Mathworks Carrier Synchronizer System Object